estimate_crit_time
returns the
conjugation rates and critical times corresponding
to a conjugation experiment.
For the ASM to return a proper conjugation estimate
the time point of measurement must be smaller than
min(tcrit1, tcrit2, tcrit3).
estimate_crit_time( DRT, TRT = NULL, tol_factor = 10, id_cols = c("ID"), verbose = T )
DRT | Dataframe. Data corresponding to the first conjugation experiment. Necessary columns: D.0, R.0 are initial pop sizes; psi.D, psi.R, psi.T are growth rates. If gamma.D is not among the columns, the function will attempt to estimate gamma.D from the data given. This requires D.t, R.t, T.t (final population sizes) and t (the time of measurement). If gamma.T is among the columns, the input under TRT will be ignored. |
---|---|
TRT | Dataframe. Data corresponding to the second conjugation experiment. Same columns needed as for DRT. |
tol_factor | Double. The imprecision factor: this factor indicates how close the system is allowed to approach a state where it violates the ASM assumptions (smaller values allow greater violation). |
id_cols | List of strings. Specifies the column names that should be treated as identifiers (will be returned in output). |
verbose | Boolean. Should warnings be returned? |
Dataframe of critical time estimates.
Other critical time functions:
scan_crit_time()
estimate_crit_time(DRT_example, TRT_example)#> ID gamma.D gamma.T tcrit1 tcrit2 tcrit3 min_tcrit #> 1 A1 9.004904e-10 1.000545e-09 9.80 11.6 11.5 9.80 #> 2 A2 9.004904e-10 1.000545e-08 7.49 11.6 10.2 7.49 #> 3 A3 8.008783e-10 1.001098e-08 7.49 11.8 10.2 7.49#> ID t gamma.D gamma.T tcrit1 tcrit2 tcrit3 min_tcrit #> 1 A1 7 9.004904e-10 1.000545e-09 9.80 11.6 11.5 9.80 #> 2 A2 7 9.004904e-10 1.000545e-08 7.49 11.6 10.2 7.49 #> 3 A3 7 8.008783e-10 1.001098e-08 7.49 11.8 10.2 7.49